3.269 \(\int \frac{x^2 \sqrt{1-c^2 x^2}}{a+b \cosh ^{-1}(c x)} \, dx\)

Optimal. Leaf size=139 \[ \frac{\sqrt{1-c x} \cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 b c^3 \sqrt{c x-1}}-\frac{\sqrt{1-c x} \sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 b c^3 \sqrt{c x-1}}-\frac{\sqrt{1-c x} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{c x-1}} \]

[Out]

(Sqrt[1 - c*x]*Cosh[(4*a)/b]*CoshIntegral[(4*(a + b*ArcCosh[c*x]))/b])/(8*b*c^3*Sqrt[-1 + c*x]) - (Sqrt[1 - c*
x]*Log[a + b*ArcCosh[c*x]])/(8*b*c^3*Sqrt[-1 + c*x]) - (Sqrt[1 - c*x]*Sinh[(4*a)/b]*SinhIntegral[(4*(a + b*Arc
Cosh[c*x]))/b])/(8*b*c^3*Sqrt[-1 + c*x])

________________________________________________________________________________________

Rubi [A]  time = 0.671674, antiderivative size = 178, normalized size of antiderivative = 1.28, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {5798, 5781, 5448, 3303, 3298, 3301} \[ \frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{c x-1} \sqrt{c x+1}}-\frac{\sqrt{1-c^2 x^2} \sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{c x-1} \sqrt{c x+1}}-\frac{\sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{c x-1} \sqrt{c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[1 - c^2*x^2])/(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[1 - c^2*x^2]*Cosh[(4*a)/b]*CoshIntegral[(4*a)/b + 4*ArcCosh[c*x]])/(8*b*c^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]
) - (Sqrt[1 - c^2*x^2]*Log[a + b*ArcCosh[c*x]])/(8*b*c^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (Sqrt[1 - c^2*x^2]*Si
nh[(4*a)/b]*SinhIntegral[(4*a)/b + 4*ArcCosh[c*x]])/(8*b*c^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{x^2 \sqrt{1-c^2 x^2}}{a+b \cosh ^{-1}(c x)} \, dx &=\frac{\sqrt{1-c^2 x^2} \int \frac{x^2 \sqrt{-1+c x} \sqrt{1+c x}}{a+b \cosh ^{-1}(c x)} \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \frac{\cosh ^2(x) \sinh ^2(x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{c^3 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \left (-\frac{1}{8 (a+b x)}+\frac{\cosh (4 x)}{8 (a+b x)}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^3 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{\sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \frac{\cosh (4 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{\sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\left (\sqrt{1-c^2 x^2} \cosh \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (\sqrt{1-c^2 x^2} \sinh \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\sqrt{1-c^2 x^2} \sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c^3 \sqrt{-1+c x} \sqrt{1+c x}}\\ \end{align*}

Mathematica [A]  time = 0.297433, size = 103, normalized size = 0.74 \[ -\frac{\sqrt{-(c x-1) (c x+1)} \left (-\cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (4 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )+\sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (4 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )+\log \left (a+b \cosh ^{-1}(c x)\right )\right )}{8 b c^3 \sqrt{\frac{c x-1}{c x+1}} (c x+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^2*Sqrt[1 - c^2*x^2])/(a + b*ArcCosh[c*x]),x]

[Out]

-(Sqrt[-((-1 + c*x)*(1 + c*x))]*(-(Cosh[(4*a)/b]*CoshIntegral[4*(a/b + ArcCosh[c*x])]) + Log[a + b*ArcCosh[c*x
]] + Sinh[(4*a)/b]*SinhIntegral[4*(a/b + ArcCosh[c*x])]))/(8*b*c^3*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))

________________________________________________________________________________________

Maple [A]  time = 0.167, size = 227, normalized size = 1.6 \begin{align*}{\frac{1}{ \left ( 16\,cx+16 \right ){c}^{3} \left ( cx-1 \right ) b}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ){\it Ei} \left ( 1,4\,{\rm arccosh} \left (cx\right )+4\,{\frac{a}{b}} \right ){{\rm e}^{{\frac{b{\rm arccosh} \left (cx\right )+4\,a}{b}}}}}+{\frac{1}{ \left ( 16\,cx+16 \right ){c}^{3} \left ( cx-1 \right ) b}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ){\it Ei} \left ( 1,-4\,{\rm arccosh} \left (cx\right )-4\,{\frac{a}{b}} \right ){{\rm e}^{{\frac{b{\rm arccosh} \left (cx\right )-4\,a}{b}}}}}-{\frac{\ln \left ( a+b{\rm arccosh} \left (cx\right ) \right ) }{8\,b{c}^{3}}\sqrt{-{c}^{2}{x}^{2}+1}{\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x)

[Out]

1/16*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,4*arccosh(c*x)+4*a/b)*exp((b*arccosh
(c*x)+4*a)/b)/(c*x+1)/c^3/(c*x-1)/b+1/16*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,
-4*arccosh(c*x)-4*a/b)*exp((b*arccosh(c*x)-4*a)/b)/(c*x+1)/c^3/(c*x-1)/b-1/8*(-c^2*x^2+1)^(1/2)/(c*x-1)^(1/2)/
(c*x+1)^(1/2)/c^3*ln(a+b*arccosh(c*x))/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-c^{2} x^{2} + 1} x^{2}}{b \operatorname{arcosh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="maxima")

[Out]

integrate(sqrt(-c^2*x^2 + 1)*x^2/(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c^{2} x^{2} + 1} x^{2}}{b \operatorname{arcosh}\left (c x\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)*x^2/(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \sqrt{- \left (c x - 1\right ) \left (c x + 1\right )}}{a + b \operatorname{acosh}{\left (c x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-c**2*x**2+1)**(1/2)/(a+b*acosh(c*x)),x)

[Out]

Integral(x**2*sqrt(-(c*x - 1)*(c*x + 1))/(a + b*acosh(c*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-c^{2} x^{2} + 1} x^{2}}{b \operatorname{arcosh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*x^2 + 1)*x^2/(b*arccosh(c*x) + a), x)